Abstract

Many cytotoxic agents initiate apoptosis by generating reactive oxidizing species (ROS). The goal of this study was to determine whether apoptosis could be induced by initial reactions of ROS near the plasma membrane. Bovine aorta endothelial cells (BAEC) were illuminated with evanescent wave visible radiation, which has limited penetration into the basal surface of cells, or by trans-radiation. Imaging of fluorescent dyes localizing in the plasma membrane, mitochondria, or nucleus confirmed that evanescent wave radiation excited only dyes in and near the plasma membrane. Singlet oxygen, an ROS generated by photosensitization, has a very short lifetime, ensuring that it oxidizes molecules residing in or very close to the plasma membrane when evanescent wave radiation is used. Cells with condensed nuclei were considered apoptotic and were quantified after treatment with varying doses of light. Annexin V staining without propidium iodide staining confirmed that these cells were apoptotic. The doses required to induce apoptosis using evanescent wave radiation were 10-fold greater than those needed for trans-irradiation. Quantitative analysis of the evanescent wave penetration into cells supports a mechanism in which the singlet oxygen created near the plasma membrane, rather than at intracellular sites, was responsible for initiation of apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.