Abstract
It is well established that particulate matter (PM) continues to be a major air pollutant challenge for human health globally, and vehicle exhaust PM emissions have been linked to many adverse health effects. However, the relative toxicity of biodiesel emissions compared to petroleum diesel remains unclear. Given the legislated mandates to increase biodiesel fuel use in response to energy security and climate concerns, in this study we examined the relationships between biodiesel fuel blend, exhaust particle oxidative potential (OP), and PM composition. Mechanistically, there is a growing consensus that the formation of reactive oxygen species (ROS) due to PM exposure leads to subsequent oxidative stress and inflammation at the cellular level. Here, dithiothreitol (DTT) assays were performed on impinger samples of PM obtained from light-duty diesel engine transient cycle emission tests with two biodiesel feedstocks, soybean (SOY) and waste vegetable oil (WVO), blended with ultralow sulfur petrodiesel at f...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.