Abstract

This paper proposes a reactive obstacle avoidance approach based solely on image data from a monocular camera stream. By clustering and analyzing the optical flow, this approach is able to identify potential collisions with dynamic obstacles. Epipolar geometry is exploited to derive velocity commands that ensure a collision-free path for a highly maneuverable autonomous vehicle via a real-time optimizer. First, the underlying image processing and optimization principles are explained in detail, before simulation results show the general feasibility of the approach. Finally, real-world tests with the ROboMObil, the German Aerospace Center’s robotic electric vehicle, are provided to demonstrate its applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.