Abstract

Soil gas surveys have been carried out on the Colorado Plateau over areas with natural occurrences of CO{sub 2}. At Farnham Dome, Utah, and Springerville-St. Johns, Arizona, proven CO{sub 2} reservoirs occur at 600-800 m depth, but no anomalous soil gas CO{sub 2} flux was detected. Background CO{sub 2} fluxes of up to about 5 g m{sup -2} day{sup -1} were common in arid, poorly vegetated areas, and fluxes up to about 20 g m{sup -2} day{sup -1} were found at Springerville-St. Johns in heavily vegetated, wet ground adjacent to springs. These elevated fluxes are attributed to shallow root zone activity rather than to a deep upflow of CO{sub 2}. Localized areas of anomalously high CO{sub 2} gas flux ({approx} 100 g m{sup -2} day{sup -1}) were documented along the Little Grand Wash Fault Zone near Crystal Geyser, Utah and nearby in Ten Mile Graben, but those in Ten Mile Graben are not directly associated with the major faults. In both areas, features with a visible gas flux are present. Isotopic measurements on the CO{sub 2} gas confirm that it originated at depth. Evidence of widespread vein calcite at the surface at Farnham Dome and travertine deposits in the other areas suggests that there has been an outflow of CO{sub 2}-rich fluids in the past. 14C ages of pollen trapped in the travertine at Springerville-St. Johns record a period of CO{sub 2} leakage to the atmosphere between 887 {+-} 35 and 3219 {+-} 30 years BP. No travertine deposits appear to be currently forming. At Springerville-St. Johns, Crystal Geyser and Ten Mile Graben, there are significant outflows of high-bicarbonate water. Movement of CO{sub 2}-rich groundwaters may be the dominant mechanism controlling the mobility of CO{sub 2} today. The very localized nature of the soil gas anomalies, evidence of large scale discharge of CO{sub 2} over a very short period of time and the outflow of ground water containing dissolved CO{sub 2} will present challenges for effective, long term monitoring of CO{sub 2} leakage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call