Abstract

Calcium silicate hydrate (C–S–H) is a mesoporous amorphous material with water confined in the gel pores, which provides the medium for investigating the structure, dynamics, and mechanical properties of the ultraconfined interlayer water molecules. In this study, C–S–H gels with different compositions expressed in terms of the Ca/Si ratio are characterized in the light of molecular dynamics. It is found that with increasing Ca/Si ratio, the molecular structure of the silicate skeleton progressively transforms from an ordered to an amorphous structure. The calcium silicate skeleton, representative of the substrate, significantly influences the adsorption capability, reactivity, H-bond network, and mobility of the interlayer water molecules. The structures were tested for mechanical properties by simulated uniaxial tension, and the mechanical tests associated with structural analysis reveal that the stiffness and cohesive force of C–S–H gel is weakened by both breakage of silicate chains and penetration of...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.