Abstract

Using reactive force-field (ReaxFF) and molecular dynamics simulation, we study atomistic scale chloride ion adsorption and transport through copper oxide thin films under aqueous conditions. The surface condition of passive oxide film plays a key role in chloride ion adsorption and facilitates initial adsorption when surface corrosion resistance is low. Using implemented surface defects, the structural evolution of the copper oxide film from thinning to breakdown is investigated. In addition to chemical thinning of passive film, extended defects in the metal substrate are observed, at high concentration of adsorbed chloride ions. The initial stage of breakdown is associated with rapid depletion of adjacent chloride ions, which creates a locally deficient environment of chloride ions in the solution. The dissolved copper cations gain higher charge upon interaction with chloride ions. Owing to the increased Coulomb interactions resulted from dissolved copper ions and locally low density of chloride ions, far-field chloride ions would diffuse into the local corrosion sites, thereby promoting further corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call