Abstract

Which is the first step in the decomposition process of nitromethane is a controversial issue, proton dissociation or C-N bond scission. We applied reactive force field (ReaxFF) molecular dynamics to probe the initial decomposition mechanisms of nitromethane. By comparing the impact on (010) surfaces and without impact (only heating) for nitromethane simulations, we found that proton dissociation is the first step of the pyrolysis of nitromethane, and the C-N bond decomposes in the same time scale as in impact simulations, but in the nonimpact simulation, C-N bond dissociation takes place at a later time. At the end of these simulations, a large number of clusters are formed. By analyzing the trajectories, we discussed the role of the hydrogen bond in the initial process of nitromethane decompositions, the intermediates observed in the early time of the simulations, and the formation of clusters that consisted of C-N-C-N chain/ring structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.