Abstract

The plasma membrane is characterized by a non-symmetrical distribution of phospholipids; the outer monolayer of the plasma membrane consists primarily of phosphatidylcholine (PC), and the aminophospholipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), preferentially reside in the inner monolayer. Asymmetry is maintained by a membrane associated ATP-dependent aminophospholipid translocase that preferentially relocates PS and PE from the outer to the inner monolayer. Although in most cells the translocase minimizes expression of PS on the outer surface, differentiating trophoblasts express increasing levels of surface PS. One possible explanation of prolonged PS externalization is that trophoblasts lack an effective aminophospholipid translocase. To test this hypothesis, fluorescent PC and PS analogues, NBD-PC and NBD-PS, were introduced into the plasma membrane of a choriocarcinoma model of trophoblast, JEG-3 cells. After incubation, the fluorescent lipid remaining on the outer monolayer was removed by incubation with fetal bovine serum. JEG-3 cells selectively translocated 80 per cent of the NBD-PS without significant translocation of NBD-PC. The process was significantly inhibited by N-ethylmaleimide (NEM) and vanadate. It is concluded that this model of trophoblast contains an active aminophospholipid translocase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.