Abstract

Epoxy-functionalized magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles (mPDGs) were prepared by co-polymerization of 1,4-divinylbenzene and glycidyl methacrylate monomers. The reaction was conducted by batch emulsion polymerization in the presence of an oil in water magnetic emulsion as a seed. The chemical composition, morphology, iron oxide content, magnetic properties, particle size and colloidal stability of the prepared magnetic polymer particles were characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetric analysis, vibrating sample magnetometry, dynamic light scattering, and zeta potential determination, respectively. The prepared mPDGs were immobilized on a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES)/octadecyltrichlorosilane (OTS), which were patterned on glass using microcontact printing technique, forming mPDGs–APTES/OTS reactive surface. This construction (mPDGs–APTES/OTS) was used as a solid support for immunoassay. The immobilized magnetic particles were bioconjugated with monoclonal anti-human IL-10 antibody to provide specific and selective recognition sites for the recombinant human IL-10 protein (antigen). Fluorescence microscopic examination was carried out to follow this immunoassay using fluorescently labeled anti-human IL-10 antibody. The results obtained proved the successful use of mPDGs–APTES/OTS microcontact printed surfaces in an immunoassay, which can be exploited and integrated into microsystems in order to elaborate medical devices (e.g. biosensors) which could provide rapid analysis at high sensitivity with low volumes of analyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.