Abstract

This study investigated removal of Hg(II) from water using FeS(s) with batch and continuous contact filtration systems. For the batch system, kinetic experiments showed that removal of Hg(II) by FeS(s) was rapid at lower concentration (500 μM), but at higher concentration (1000 and 1250 μM), more time was required to achieve greater than 99% removal. The concentration of iron released to the solution remained relatively low, typically below 3 μM. This would theoretically present less than 1% of the Hg(II) removed. Thus, a simple exchange of Hg(II) for Fe(II) in the solid (FeS(s)) does not explain the results, but if the Fe(II) released could react to form another solids, low concentrations of Fe do not preclude a mechanism in which Hg(II) reacts to form HgS and release Fe(II). A continuous contact dead-end ultrafiltration (DE/UF) system was developed to treat water containing Hg(II) by applying a FeS(s) suspension with stirred or non-stirred modes. A major reason for applying stirring to the system was to investigate the role of “shear” flow in rejection of Hg(II)-contacted FeS(s) by a UF membrane and the stability of Hg on the FeS(s). The Hg(II)-contacted FeS(s) was completely rejected by the DE/UF system and mercury was strongly retained on the FeS(s) particles. Almost no release of Hg(II) (≈0 mM) from the FeS(s) solids was observed when they were contacted with 0.1M-thiosulfate, regardless of whether the system was operated in stirred or non-stirred mode. However, rapid oxidation of FeS(s) was observed in the stirred system but not in the non-stirred system. Determining the mechanism of oxidation requires further study, but it is important because oxidation reduces the ability of the solids to remove additional Hg(II).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.