Abstract

An Ir metal target was reactively rf sputtered in a planar magnetron source to develop iridium oxide deposition conditions. Gas blends of hydrogen, oxygen, and argon were used to provide competitive control over the reduction/oxidation characteristics of the sputter plasma. Optical emission spectroscopy allowed direct observation of hydrogen, oxygen, and iridium atomic peaks and OH molecular bands. Each of the twelve gas flow conditions could be clearly defined as either reducing or oxidizing by plasma emission spectroscopy. A given plasma reduction/oxidation state can be maintained over a wide range of gas flow conditions by coordinated adjustment of hydrogen and oxygen flows. The electrochemical properties of the iridium oxide films change dramatically in the vicinity of the reduction/oxidation plasma transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.