Abstract
Aluminum Nitride (AIN) nanoparticles were synthesized using a Reactive Gas Condensation (RGC) technique in which a mixture of ammonia (NH3) and nitrogen (N2) gases were used for the nitridation of aluminum. NH3 served as the reactive gas, while N2 served as both a carrier gas and the inert source for particle condensation. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses revealed that at reactive gas compositions greater than 10% NH3 in N2, samples were composed entirely of hexagonal AIN nanoparticles. Electron diffraction patterns showed single crystal hexagonal AIN structure. The particle size was controlled by varying the pressure of the gas mixture. AIN nanoparticles were dispersed in a liquid matrix to enhance thermal conductivity. Results showed that a minimal addition of AIN increased the thermal conductivity of hydrocarbon pump oil by approximately 27%. The thermal conductivity became constant after reaching a maximum above 0.01 wt% AIN. Temporal stability of AIN was studied by XRD. Samples exposed to air for extended periods of time and analyzed by XRD show no degradation of crystalline AIN nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.