Abstract
In recent years, we have witnessed numerous indoor fires caused by the flammable properties of cotton. Flame-retardant cotton deserves our attention. A novel boric acid and diethylenetriaminepenta (methylene-phosphonic acid) (DTPMPA) ammonium salt-based chelating coordination flame retardant (BDA) was successfully prepared for cotton fabrics, and a related retardant mechanism with ion transfer was investigated. BDA can form a stable chemical and coordination bond on the surface of cotton fibers by a simple three-curing finishing process. The limiting oxygen index (LOI) value of BDA-90 increased to 36.1%, and the LOI value of cotton fabric became 30.3% after 50 laundering cycles (LCs) and exhibited excellent durable flame retardancy. Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) methods were used to observe the bonding mode and morphology of BDA on cotton fibers. A synergistic flame-retardant mechanism of condensed and gas phases was concluded from thermogravimetry (TG), cone calorimeter tests, and TG-FTIR. The test results of whiteness and tensile strength showed that the physical properties of BDA-treated cotton fabric were well maintained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.