Abstract

This study investigates treating polyethylene terephthalate (PET) waste water bottles with different mass of ethylene glycol (EG) using reactive extrusion technique at a temperature of 260°C. The study puts emphases on evaluating the thermal, mechanical, and chemical characteristics of the treated polyethylene terephthalate. The properties of the treated PET from the extruder were analyzed using FT-IR, TGA, DSC, and nanoindentation. The melt flow indexes (MFI) of both treated and untreated PET were also measured and compared. Thermal properties such as melting temperature (Tm) for treating PET showed an inversely proportional behavior with the EG concentrations. The FT-IR analysis was used to investigate the formation of new linkages like hydrogen bonds between PET and EG due to the hydroxyl and carbonyl groups. Nanoindentation results revealed that both the mechanical characteristics, elastic modulus and hardness, decrease with increasing EG concentration. On the other hand, the melt flow index of treated PET exhibited an increase with increasing EG concentration in the PET matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.