Abstract

Reactive extrusion additive manufacturing (REAM) is a recently developed process that utilizes reactive thermoset resin-hardener systems that are mixed inside a shearing element, deposited layer by layer to form a structure, and cured in-situ without external energy. An externally powered active mixing element was developed and used to demonstrate REAM with a highly viscous resin that was filled with 10 wt% chopped carbon fibers. This was achieved by adding fumed silica and increasing the temperature of the fiber-resin mixture to enable effective in-situ mixing while maintaining shape retention upon deposition. Tensile properties of fiber-reinforced and reference REAM parts were measured and explained using their fiber alignment and length distribution. Finally, a mechanics model was utilized to determine the optimal fiber content for strength and stiffness, considering the degradation of fiber length at higher volume fractions due to the mixing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call