Abstract
We describe the formalization of the reactive docking protocol, a method developed to model and predict reactions between small molecules and biological macromolecules. The method has been successfully used in a number of applications already, including recapitulating large proteomics data sets, performing structure-reactivity target optimizations, and prospective virtual screenings. By modeling a near-attack conformation-like state, no QM calculations are required to model the ligand and receptor geometries. Here, we present its generalization using a large data set containing more than 400 ligand-target complexes, 8 nucleophilic modifiable residue types, and more than 30 warheads. The method correctly predicts the modified residue in ∼85% of complexes and shows enrichments comparable to standard focused virtual screenings in ranking ligands. This performance supports this approach for the docking and screening of reactive ligands in virtual chemoproteomics and drug design campaigns.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.