Abstract

AbstractSummary: The effectiveness of some thermoplastic elastomers grafted with maleic anhydride (MA) or with glycidyl methacrylate (GMA) as compatibilizer precursors (CPs) for blends of low density polyethylene (LDPE) with polyamide‐6 (PA) has been studied. The CPs were produced by grafting different amounts of MA or GMA onto a styrene‐block‐(ethylene‐co‐1‐butene)‐block‐styrene copolymer (SEBS) (KRATON G 1652), either in the melt or in solution. A commercially available SEBS‐g‐MA copolymer with 1.7 wt.‐% MA (KRATON FG 1901X) was also used. The effect of the MA concentration and of other characteristics of the SEBS‐g‐MA CPs was also studied. The specific interactions between the CPs and the blends components were investigated through characterizations of the binary LDPE/CP and PA/CP blends, in the whole composition range. It was demonstrated that the SEBS‐g‐GMA copolymers display poor compatibilizing effectiveness due to cross‐linking resulting from reactions of the epoxy rings of these CPs with both the amine and the carboxyl end groups of PA. On the contrary, the compatibilizing efficiency of the MA‐grafted elastomers, as revealed by the thermal properties and the morphology of the compatibilized blends, was shown to be excellent. The results of this study confirm that the anhydride functional groups possess considerably higher efficiency, for the reactive compatibilization of LDPE/PA blends, than those of the ethylene‐acrylic acid and ethylene‐glycidyl methacrylate copolymers investigated in previous works.SEM micrograph of the 75/25 LD08/PA blend (with 2 phr SEBSMA1).magnified imageSEM micrograph of the 75/25 LD08/PA blend (with 2 phr SEBSMA1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call