Abstract

Abstract Poly(propylene carbonate) (PPC)/polypropylene (PP) spunbond nonwoven slice has gained more attention, owing to its excellent properties, such as biodegradability, flexibility, biocompatibility, and CO2 utilization. However, the applications of this green material are limited due to the poor thermodynamic incompatibility between PPC and PP. In this paper, PP grafted with maleic anhydride (MAH) and styrene (St) (PP-g-(MAH-co-St)), prepared by a mechanochemical method and having a grafting percentage G MAH = 1.40 %, was used as a compatibilizer to prepare a biodegradable PPC/compatibilizer/PP composite-spunbond nonwoven slice by melt-blending. The effects of compatibilizer content on the tensile strength, elongation at break, melt flow rate, thermal properties, and micro-morphology of PPC/PP-g-(MAH-co-St)/PP were systematically studied. Furthermore, the mechanism of compatibilization of PP-g-(MAH-co-St) in the PPC/PP spunbond nonwoven composite slice is discussed. The results indicated that this green PP-g-(MAH-co-St) exhibited a clear reactive compatibilization effect. Therefore, it can be considered as a good compatibilizer for the biodegradable PPC/PP spunbond nonwoven slice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call