Abstract
Molecular beam scattering experiments are used to investigate reactions of SO(2) at the surface of a molten alkali carbonate eutectic at 683 K. We find that two-thirds of the SO(2) molecules that thermalize at the surface of the melt are converted to gaseous CO(2) via the reaction SO(2)(g) + CO(3)(2-) --> CO(2)(g) + SO(3)(-2). The CO(2) product is formed from SO(2) in less than 10(-6) s, implying that the reaction takes place in a shallow liquid region less than 100 A deep. The reaction probability does not vary between 683 and 883 K, further implying a compensation between decreasing SO(2) residence time in the near-interfacial region and increasing reactivity at higher temperatures. These results demonstrate the remarkable efficiency of SO(2) --> CO(2) conversion by molten carbonates, which appear to be much more reactive than dry calcium carbonate or wet slurries commonly used for flue gas desulfurization in coal-burning power plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.