Abstract

Coarse-grained (CG) models have allowed for the study of long time and length scale properties of a variety of systems. However, when a system undergoes chemical reactions, current CG models are not able to capture this behavior because of their fixed bonding topology. In order to develop CG models capable of taking into account such chemical changes, a model must be able to adapt its bonding topology and CG site-site interactions to switch between multiple bonding structures (i.e., topologies). This challenge particularly impacts "bottom-up" CG models developed from the fundamental underlying atomistic-scale interactions. In this paper, a reactive coarse-grained (RCG) method is developed which utilizes all-atom (AA) data to create a CG model able to represent chemical reactions by undergoing changes in bonding topology. As an example, the RCG method was applied to a model of SN2 reactions of 1-chlorobutane with a chloride ion and 1-iodobutane with an iodide ion in a methanol solvent. An asymmetric reaction was also modeled by incorporating a constant energy offset to the 1-iodobutane model. In each case, the calculated CG potential of mean force (PMF) results in good agreement with the fully AA PMF for the reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.