Abstract

To study the changes in the morphological and morphometric parameters of immunopositive astrocytes of the amygdala in absence epilepsy depending on hormonal profile. Adult female WAG/Rij rats were used as experimental subjects. The astrocytes were detected on serial sections using a reaction to glial fibrillary acidic protein (GFAP) with pre-stained hematoxylin. Quantitative analysis was carried out for a 204.8´153.6 μm2 field of view. In the control group, astrocytes had a relatively regular stellate form and GFAP was moderately expressed in their bodies and processes. The number of astrocytes was 18.20±2.87, and their area was 164±3.29 μm2. After ovariectomy, a high expression of the protein, both in the bodies and in the processes of astrocytes, increasing the cell size to 188.85±4.97 μm2 (p<0.05) was observed. The astrocytes increased to 34.55±3.03 (p<0.05). In addition, the deformation of the processes and their diffuse defibration were observed. After hormone replacement therapy, a decrease in GFAP expression was detected, the area of astrocytes became smaller in comparison with the group after ovariectomy: 173.54±5.48 μm2 (p<0.05). Morphological changes in glial cells were manifested as a decrease in the size of their bodies, the processes became smooth without diffuse sprouting and swelling, which is probably associated with neuroprotective functions of estradiol. Thus, the results of our study demonstrated that the deficiency of female sex hormones led to the increase in both the amount and area of astrocytes in the anterior cortical nucleus of the amygdala, and hormone replacement therapy positively affected the structural and quantitative characteristics of astrocytes due to the endogenous protective role of estradiol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.