Abstract
This research study shows that a ceria ceramic can be bonded to an ODS ferritic stainless steel (MA956) by reactive brazing using a Ag68-Cu27.5-Ti4.5 interlayer. The ability to join these materials provides an alternative to the current ceramic interconnects used in the development of solid oxide fuel cells. Initial results show that the ceramic-metal bonds survived the bonding process irrespective of the degree of porosity within the ceria ceramic. Metallographic analyses indicate that a reaction zone formed along the ceria/braze interface, which was not only titanium rich, but also consisted of a mixture of copper oxides. When the ceramic-metal bonds were exposed to high bonding temperatures or when subjected to thermal cycling at 700°C, this reaction layer increased in thickness and had a detrimental affect on the mechanical strength of the final joints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.