Abstract
We describe two different approaches to exploiting parallel computing architecture that have been used successfully for reactive molecular simulation using bond-order potentials. These potentials are based on the Tersoff bond-order formalism, and allow accurate treatement of covalent bonding reactions in the framework of a classical potential. They include both Brenner's reactive empirical bond order (REBO) potential and our adaptive intermolecular version of this potential (AIREBO). Traditional spatial and atom-based parallel decompositioon techniques have been employed in the RMD-CE program developed for parallel molecular dynamics simulations with a variety of reactive potentials. Key features of this implementation, including the object-oriented approach and novel algorithms for the integrator and neighbor lists, are discussed. The resulting code provides efficient scaling down to system sizes of 400 atoms per processor, and has been applied successfully to systems of as many as half a million atoms. For smaller systems, the parallel replica dynamics algorithm has been successfully applied to take advantage of parallelism in the time domain for rare-event systems. This approach takes advantage of the independence of different parts of a dynamics trajectory, and provides excellent parallel efficiencies for systems as small as tens of atoms, where other parallel simulation techniques are not applicable. This technique has been used to model the pyrolysis of hexadecane on the microsecond timescale, at more realistic temperatures than are achievable with other simulation methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.