Abstract

AbstractA high molecular weight acrylonitrile/butadiene/methacrylic acid (Nipol 1472) rubber is chosen to control processability and mechanical properties of a TGDDM (tetra glycidyl diphenyl methane) based epoxy resin formulation for aerospace composite applications. The physical blend of rubber and epoxy resin, achieved by dissolution of all the components in a common solvent, forms a heterogeneous system after solvent removal and presents coarse phase separation during cure that impairs any practical relevance of this material. A marked improvement of rubberepoxy miscibility is achieved by reactive blending (‘pre‐reaction’) the epoxy oligomer with the functional groups present in the rubber. The epoxy‐rubber ‘adduct’ so obtained appears as a homogeneous system at room temperature and also after compounding with the curing agent. Depending on the nature and extent of interactions developed between the rubber and the epoxy resin during ‘pre‐reaction,’ materials with different resin flow characteristics, distinctive morphologies and mechanical properties after curing were obtained. The effect of ‘pre‐reaction’ on the resin cure reaction kinetics has been also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.