Abstract

The deployment of autonomous systems in uncertain and dynamic environments has raised fundamental questions. Addressing these is pivotal to build fully autonomous systems and requires a systematic integration of planning and control. We first propose reactive risk signal interval temporal logic (ReRiSITL) as an extension of signal temporal logic (STL) to formulate complex spatiotemporal specifications. Unlike STL, ReRiSITL allows to consider uncontrollable propositions that may model humans as well as random environmental events such as sensor failures. Additionally, ReRiSITL allows to incorporate risk measures, such as (but not limited to) the conditional value-at-risk, to measure the risk of violating certain spatial specifications. Second, we propose an algorithm to check if an ReRiSITL specification is satisfiable. For this purpose, we abstract the ReRiSITL specification into a timed signal transducer and devise a game-based approach. Third, we propose a reactive planning and control framework for dynamical control systems under ReRiSITL specifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.