Abstract

Zero valent iron (ZVI) is widely used in permeable reactive barriers (PRBs) for the remediation of contaminated groundwater. The hydraulic conductivity of ZVI can be reduced due to iron corrosion processes activated by water and its constituents including pollutants. To overcome this issue, ZVI particles can be mixed with granular materials that avoid a drastic reduction in the hydraulic conductivity over time. In light of the most recent studies concerning iron corrosion processes and recalling the basic principles of century-old chemistry of iron corrosion, we have revised the results of 24 long-term column tests investigating the hydraulic and reactive behavior of granular mixtures composed of ZVI and pumice or lapillus. From this analysis, we found a clear correlation between the reactive behavior, described by the retardation factor (i.e., the ratio between flow velocity and propagation velocity of the contamination front), and the hydraulic behavior, described by means of the permeability ratio of the reactive medium (i.e., the ratio between the final and initial value of hydraulic conductivity). In particular, the permeability ratio decreased with the increase in the retardation factor. Moreover, it was found that the retardation factor is a useful parameter to evaluate the influence of flow rate, contaminant concentration, and ZVI content on the reactive behavior of the granular medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.