Abstract

Durable superhydrophobic coating is attractive due to its long-term superhydrophobicity, anti-fouling and self-cleaning properties. However, the fabrication of durable superhydrophobic coatings on a fragile surface, including leather and paper, is still a challenge due to its bad resistance to harsh environments such as high temperature, high pressure and strong acid or strong base. Herein, we developed a universal way to fabricate long-lasting superhydrophobic coating on leather via amphiphilic Janus particles, which have one of the semispheres functionalized with hydrophobic 1-dodecanethiol and the other semisphere functionalized with hydrophilic β-mercaptoethylamine. Polyurethane with isocyanate end groups was sprayed on the leather surface as an intermediate layer to strongly link Janus particles with leather via cross-linking. Moreover, amphiphilic Janus particles were fabricated from hollow SiO2 particles via a thiol-ene click reaction due to its low density. The superhydrophobic coating on leather possessed a high water contact angle of 162.2°. Furthermore, it still retained excellent hydrophobicity with a water contact angle of 154° after 140 cycles of abrasion using sandpaper. This study not only provides a novel method for the fabrication of amphiphilic hollow SiO2 Janus nanoparticles, but also resolves the difficulties in constructing long-lived superhydrophobic coatings on fragile surfaces by existing methods. Meanwhile, the present study also suggests a potential way to translocate functional Janus microcapsules, which may give some significant suggestions on the future nanoparticle design for drug delivery and energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.