Abstract

To achieve the efficient resource treatment of aromatic volatile organic compounds (VOCs) of high toxicity, this work chose anisole as a representative pollutant and investigated its removal by an MCM–41-supported sulfuric acid (SSA/MCM–41) adsorbent. The results indicate that the SSA/MCM–41 adsorbent exhibited a reactive temperature range of 110–140 °C, in which the anisole removal ratio (Xa) was greater than 95%. The collected breakthrough adsorption data fit the dose–response model. In the comprehensive analysis of the process conditions, reducing the flow rate enhanced the theoretical breakthrough time and adsorption capacity (tB,th and QB,th), while reducing the inlet concentration or raising the bed height resulted in a first increasing and then slightly decreasing trend in the QB,th. As a result, the highest tB,th and QB,th were 73.82 min and 247.56 mg g−1, respectively. The FTIR and 1H/13C NMR results demonstrate that the adsorbed products included both 4-methoxybenzenesulfonic acid and 1-methoxy-4-(4-methoxyphenyl)sulfonylbenzene. Accordingly, the mechanism of reactive adsorption was proposed. Meanwhile, the spent SSA/MCM–41 could be desorbed and regenerated for cyclic reuse. It is believed that the results obtained will assist in promoting the application of the novel gas–solid adsorption approach in VOC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call