Abstract

Tumor necrosis factor (TNF) is required in the control of infection with Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. TNF is essential and non-redundant for forming microbiocidal granulomas, and cannot be replaced by other members of the TNF family. We established a model of latent Mtb infection in mice, allowing investigation of the reactivation of latent Mtb as observed in patients receiving TNF-neutralizing therapy used in rheumatoid arthritis and Crohn's disease. Antibody neutralization of TNF is able to reactivate clinically silent Mtb infection. Using mutant mice expressing solely membrane, but not soluble TNF, we demonstrated that membrane TNF is sufficient to control acute Mtb infection. Therefore, we hypothesize that TNF-neutralizing therapy, sparing membrane TNF, may have an advantage as compared to complete neutralization. In conclusion, endogenous TNF is critical for the control of tuberculosis infection. Genetic absence or pharmacological neutralization of TNF results in uncontrolled infection, while selective neutralization might retain the desired anti-inflammatory effect but reduce the infectious risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.