Abstract

Degenerative disc disease, associated to low back pain, afflicts more than 50% of humans, and represents a major healthcare problem, especially for the pathology initiation. Current treatments range from conservative strategies to more invasive surgical techniques, such as disc removal and vertebral fusion. In the Intervertebral Disease (IVD) the nucleus pulposus (NP) degeneration is a key factor for the pathology initiation. Several tissue engineering approaches aiming to restore the appropriate NP cell (NPCs) and matrix content, were attempted by using adult stromal cells either from bone marrow or adipose tissue, chondrocytes, notochordal cells and more recently also pluripotent stem cells. However, none was fully satisfactory since the NP acid and a-vascularized environment appeared averse to the implanted heterologous cells. Several studies demonstrated the efficacy of platelet derivatives such as platelet rich plasma (PRP) in promoting the regeneration of connective tissues. We investigated the efficacy of PRP on NPCs proliferation and differentiation with the goal to propose the direct stimulation of resident cells (stimulation of endogenous cells – less invasive surgical procedure) or the implantation of NPCs expanded in vitro in the presence of PRP as therapeutic agents in IVD degeneration.NPCs were isolated from small fragments of NP explants, cultivated in medium supplemented with PRP or FCS (standard condition control) and characterized by FACS analysis for the expression of the typical mesenchymal stem cells markers CD34, CD44, CD45, CD73, CD90 and CD105. NPCs cultured in PL showed a phenotypic profile like the cells cultured in FCS. However, compared to NPCs expanded in the presence of FCS, NPCs expanded in PRP showed a much better proliferation and differentiation capacity. NPCs differentiation was evaluated by the cell ability to produce an organized metachromatic cartilaginous matrix, confirmed by the positive immunohistochemical staining for chondrogenic markers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call