Abstract
Direct reprogramming of somatic cells to pluripotent stem cells entails the obliteration of somatic cell memory and the reestablishment of epigenetic events. Induced pluripotent stem cells (iPSCs) have been created by reprogramming somatic cells through the transduction of reprogramming factors. During cell reprogramming, female somatic cells must overcome at least one more barrier than male somatic cells in order to enter a pluripotent state, as they must reactivate an inactive X chromosome (Xi). In this study, we investigated whether the sex of somatic cells affects reprogramming efficiency, differentiation potential and the post-transcriptional processing of Xist RNA after reprogramming. There were no differences between male and female iPSCs with respect to reprogramming efficiency or their differentiation potential in vivo. However, reactivating Xi took longer than reactivating pluripotency-related genes. We also found that direct reprogramming leads to gender-appropriate post-transcriptional reprogramming - like male embryonic stem cells (ESCs), male iPSCs expressed only the long Xist isoform, whereas female iPSCs, like female ESCs, expressed both the long and short isoforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.