Abstract

Model systems have previously been developed in which herpes simplex virus (HSV) is retained in human fibroblasts in a nonreplicating state known as quiescence. The HSV type 1 (HSV-1) immediate-early (IE) protein ICP0, an important activator of gene expression, reactivates the quiescent genome and promotes the resumption of virus replication. Previous studies reported that infection with ICP0-null HSV-1 mutants fails to reactivate quiescent HSV, even when the mutant itself undergoes productive replication, leading to the hypothesis that quiescent genomes exist in a silent configuration in which they are shielded from trans-acting factors. I reinvestigated these findings, using HSV-1 mutants with lesions in the transcription activators VP16, ICP0, and ICP4 to establish quiescent infection at high efficiency. Superinfection with ICP0-null HSV-1 mutants at a low multiplicity of infection (MOI), so that individual plaques were formed, reactivated expression from the quiescent genome, demonstrating that the requirement for ICP0 is not absolute. The previously reported failure to observe reactivation by ICP0-null mutants was shown to be a consequence of either a low initial MOI or a high superinfecting MOI. Competition between viral genomes at the level of gene expression and virus replication, especially when ICP0 was absent, was demonstrated during reactivation and also during normal infection of human fibroblasts. The results show that the multiplicity-dependent phenotype of ICP0-null mutants limits the efficiency of reactivation at low MOIs and that competition between genomes occurs at high MOIs. The conclusion that quiescent HSV genomes are extensively silenced and intrinsically insensitive to trans-acting factors must be reevaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.