Abstract

Permeabilized cell models of the large heliozoon Echinosphaerium akamae were prepared by treatment with 100 mM EGTA or 1% Triton X-100. When > 10(-6) M Ca(2+) was added to the EGTA-permeabilized cells, axopodial cytoplasm became contracted and several swellings were formed along the axopodial length. Axonemal microtubules remained intact, while higher concentration of Ca(2+) (> 10(-4) M) induced microtubule disassembly and complete breakdown of the axopodia. In Triton-permeabilized cells, cytoplasmic contraction and relaxation of the cell body were induced repeatedly by successive addition and removal of Ca(2+). The contraction did not require ATP, and was not inhibited by cytochalasin B. Electron microscopy showed, in EGTA-permeabilized axopodia, contractile tubules became granulated by the addition of Ca(2+). From these observations, it is strongly suggested that Ca(2+)-dependent granulation of the contractile tubules is responsible for the axopodial contraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.