Abstract
Accumulating evidence suggests that aberrant DNA methylation and gene silencing of tumor suppressors are pervasive in gastric malignancies, supporting reactivation of tumor suppressors through DNA demethylation as a potential therapeutic opportunity. Atp4a is an important tumor suppressor gene, encoding H+, K+-ATPase, and mediating gastric acid secretion in the stomach. Using transgenic gastric cancer model K19-Wnt1/C2mE (Gan) mice, by combining the transcriptome and MeDIP (methylated DNA immunoprecipitation) sequencing, together with qRT-PCR, we showed that Atp4a was expressed at low levels in tumor tissues and multiple GC cells, while both 5-aza-CdR and 18β-glycyrrhetinic acid (GRA) pharmacological treatment triggered Atp4a activation with downregulation of DNMT1. In addition, CpG island (CGI) search showed that the CpG rich region is absent in the promoter region but present in exons 9–14 of Atp4a. Methylation specific PCR (MSP) indicated that Atp4a was fully or partly methylated in multiple GC cells. Further MassArray suggested that the demethylation in the CpG site 75, 183, 196, 262–268 might be responsible for the reactivation of Atp4a. Our research identified that GRA, a bioactive component found in abundance in Radix Glycyrrhiza, reactivated Atp4a expression and inhibited gastric tumorigenesis as a potential demethylation agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.