Abstract

BackgroundWe have previously demonstrated that phenylhexyl isothiocyanate (PHI), a synthetic isothiocyanate, inhibits histone deacetylases and remodels chromatins to induce growth arrest in HL-60 myeloid leukemia cells in a concentration-dependent manner.MethodsTo investigate the effect of PHI, a novel histone deacetylases inhibitor (HDACi), on demethylation and activation of transcription of p15 in acute lymphoid leukemia cell line Molt-4, and to further decipher the potential mechanism of demethylation, DNA sequencing and modified methylation specific PCR (MSP) were used to screen p15-M and p15-U mRNA after Molt-4 cells were treated with PHI, 5-Aza and TSA. DNA methyltransferase 1 (DNMT1), 3A (DNMT3A), 3B (DNMT3B) and p15 mRNA were measured by RT-PCR. P15 protein, acetylated histone H3 and histone H4 were detected by Western Blot.ResultsThe gene p15 in Molt-4 cells was hypermethylated and inactive. Hypermethylation of gene p15 was attenuated and p15 gene was activated de novo after 5 days exposure to PHI in a concentration-dependent manner. DNMT1 and DNMT3B were inhibited by PHI (P < 0.05). Alteration of DNMT3A was not significant at those concentrations. Acetylated histone H3 and histone H4 were accumulated markedly after exposure to PHI.ConclusionPHI could induce both DNA demethylation and acetylated H3 and H4 accumulation in Molt-4 cells. Hypermethylation of gene p15 was reversed and p15 transcription could be reactivated de novo by PHI.

Highlights

  • We have previously demonstrated that phenylhexyl isothiocyanate (PHI), a synthetic isothiocyanate, inhibits histone deacetylases and remodels chromatins to induce growth arrest in HL-60 myeloid leukemia cells in a concentration-dependent manner

  • DNA methylation is catalyzed by DNA methyltransferases (DNMTs), of which three active enzymes have been identified in mammals

  • We have previously demonstrated that phenylhexyl isothiocyanate (PHI), a man-made isothiocyanate, inhibits histone deacetylases and remodels chromatins to induce growth arrest in HL-60 myeloid leukemia cells in a concentration-dependent manner[13]

Read more

Summary

Introduction

We have previously demonstrated that phenylhexyl isothiocyanate (PHI), a synthetic isothiocyanate, inhibits histone deacetylases and remodels chromatins to induce growth arrest in HL-60 myeloid leukemia cells in a concentration-dependent manner. The major epigenetic transcriptional controls involved in gene silencing are DNA methylation and covalent modification of histone proteins. A broad spectrum of genes are frequently hypermethylated in cancers, including those associated with cell cycle regulation, detoxification, tumor suppression, and apoptosis etc. Modifications to histones influence chromatin structure, and gene transcription, including those coding for tumor suppressor proteins. One of the key histone modification that control gene transcription is acetylation, which is regulated by two opposing enzymatic activities (histone acetyltransferases [HATs] and histone deacetylases [HDACs]) [7]. HATs are in charge of histone acetylation, leading to the relaxation of chromatin structure and transcriptional activation of genes, while HDACs are in charge of histone deacetylation, which is associated generally with chromatin condensation and transcriptional repression[8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.