Abstract

Zirconium hydroxide was evaluated for the ability to detoxify chemical warfare agents GD, HD, and VX. Observed half-lives were 8.7 min, 2.3 h, and 1 min, respectively. Owing to its extremely fast reaction rate, the mechanism for VX was further characterized. Zirconium hydroxide samples were calcined at temperatures ranging from 150 to 900 °C to investigate the effect of surface speciation on VX hydrolysis rates. NMR, TGA/DSC, TEM, and potentiometric tritration reveal the importance of the acidic, bridging OH groups of Zr(OH)4 which are proposed to protonate and catalytically hydrolyze VX in a manner similar to autocatalysis by EMPA in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call