Abstract

Reactions of the nickel(0) compound NiL4 (L = PPh3) with alkyl halides RX involve initial inner-sphere halogen atom abstraction from the alkyl halides to form alkyl radicals R· and halonickel(I) metalloradical species NiX(PPh3)2,3. The radical pairs then undergo combination within the solvent cage to give the square planar nickel(II) compounds NiRX(PPh3)2. Radical intermediacy is demonstrated persuasively by observations that the relative rates vary in the orders tert-butyl > sec-butyl > n-butyl and RI > RBr > RCl, while density functional theory calculations indicate that the radical mechanism provides a lower energy pathway than do alternative, more conventional pathways. The product of the reaction of Ni(PPh3)4 with methyl iodide, NiMeI(PPh3)2, decomposes in solution to ethane and NiI(PPh3)2,3, but when RX = EtI, n-BuI, sec-BuI, tert-BuI, the alkyl-nickel products undergo rapid β-hydrogen elimination to give the hydride NiHI(PPh3)2 plus the corresponding alkene(s). Reactions also occur in which a porti...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.