Abstract

The reactions of ionised acetanilide, C(6)H(5)NH(=O)CH(3)(.+), and its enol, C(6)H(5)NH(OH)=CH(2)(.+), have been studied by a combination of tandem mass spectrometric and computational methods. These two isomeric radical cations have distinct chemistries at low internal energies. The keto tautomer eliminates exclusively CH(2)=C=O to give ionised aniline. In contrast, the enol tautomer loses H-N=C=O, via an unusual skeletal rearrangement, to form predominantly ionised methylene cyclohexadiene. Hydrogen atom loss also occurs from the enol tautomer, with the formation of protonated oxindole. The mechanisms for H-N=C=O and hydrogen atom loss both involve cyclisation; the former proceeds via a spiro transition state formed by attachment of the methylene group to the ipso position, whereas the latter entails the formation of a five-membered ring by attachment to the ortho position. The behaviour of labelled analogues reveals that these two processes have different site selectivities. Hydrogen atom loss involves a reverse critical energy and is subject to an isotope effect. Surprisingly, attempts to promote the enolisation of ionised acetanilide by proton-transport catalysis were unsuccessful. In a reversal of the usual situation for ionised carbonyl compounds, ionised acetanilide is actually more stable than its enol tautomer. The enol tautomer was resistant to proton-transport catalysed ketonisation to ionised acetanilide, possibly because the favoured geometry of the encounter complex with the base molecule is inappropriate for facilitating tautomerisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call