Abstract

During self-splicing of the Tetrahymena rRNA precursor, the intervening sequence (IVS) is excised as a unique linear molecule and subsequently cyclized. Cyclization involves formation of a phosphodiester bond between the 3' end and nucleotide 16 of the linear RNA, with release of an oligonucleotide containing the first 15 nucleotides. We find that the rate of cyclization is independent of pH in the range 4.7-9.0. A minor site of cyclization at nucleotide 20 is characterized. Cyclization to this site becomes more prominent at higher pHs, although under all conditions examined it is minor compared to cyclization at nucleotide 16. The circular IVS RNAs are unstable, undergoing hydrolysis at the phosphodiester bond that was formed during cyclization. We find that the rate of site-specific hydrolysis is first order with respect to hydroxide ion concentration, with a rate constant 10(3)-10(4)-fold greater than that of hydrolysis of strained cyclic phosphate esters. On the basis of these results, we propose that circular IVS RNA hydrolysis involves direct attack of OH- on the phosphate at the ligation junction, that particular phosphate being made particularly reactive by the folding of the RNA molecule. Cyclization, on the other hand, appears to occur by direct attack of the 3'-terminal hydroxyl group of the linear IVS RNA without prior deprotonation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call