Abstract
The reactivities of the amine-containing pharmaceuticals fluoxetine and metoprolol with hypochlorite were studied using conditions that simulate wastewater disinfection including neutral pH (7.0), a range of reaction times (2–60 min), and a molar excess of hypochlorite relative to the pharmaceutical concentration (5.7 times). The reactions were monitored using liquid chromatography (LC) with several detection modes including ultraviolet absorbance (UV), mass spectrometry (MS), and post-column reaction/reductive electrochemistry (EC) for determining active chlorine products. At levels of 10 μM, both compounds reacted rapidly (<2 min) to form principally N-chloramine products that were stable in aqueous solution for at least 1 h. The reaction was also studied in wastewater, and similar reactivity was noted. These results demonstrate that the cations fluoxetine and metoprolol are likely to be rapidly transformed into neutral N-chloramines during wastewater disinfection. The reactivity of the N-chloramines was also studied with sulfite to simulate dechlorination, which is often employed in wastewater treatment. Both N-chloramines reacted slowly with sulfite. In the pure water dechlorination experiments, it was estimated that 70% and 10% of the peak areas remained after 2 min reaction time for fluoxetine and metoprolol, respectively. At longer reaction times both N-chloramines had been completely reduced by sulfite, and the product of the sulfite reduction reaction was the parent pharmaceutical amine. Since typical dechlorination times in wastewater treatment are on the order of seconds, this suggests the chloramines formed from these two basic drugs might evade dechlorination and be released into the environment. The implications of chloramine release are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.