Abstract

The reactions of the SnII base Sn(NMe2)2 with CyPHM (Cy=cyclohexyl) produce a range of products, depending primarily on the alkali metal (M) involved. The 1:3 stoichiometric reaction of Sn(NMe2)2 with CyPHNa in the presence of the Lewis base donor PMDETA (PMDETA=(Me2NCH2CH2)2NMe) gives [(NaPMDETA)2{Sn(mu-PCy)}3] (3), containing the electron-deficient [{Sn(mu-PCy)}3]2- dianion. Natural bond order (NBO) and electron localisation function (ELF) calculations show that this species is described most appropriately by a two-electron, three-centre Sn3 bonding model. Evidence that 3 results from phosphide coupling is provided by the 1:1 reaction of Sn(NMe2)2 with CyPHNa in the presence of PMDETA, which gives 3 and trace amounts of (NaPMDETA)2[{Sn(mu-PCy)}2(mu-PCyPCy)] (4) (containing one PCyPCy2- dianion). Greater extents of phosphide coupling are observed as the size of the Group 1 metal is increased. Thus, the 1:3 reaction of Sn(NMe2)2 with CyPHK in THF gives the co-crystalline product {(K2 THF)2[{Sn(mu-PCyPCy)}2(mu-PCy)]}0.9{(K2 THF)2[{Sn(mu-PCy)}2(mu-PCyPCy)]}0.1 (5) (containing [{Sn(mu-PCyPCy)}2(mu-PCy)]2- and [{Sn(mu-PCy)}2(mu-PCyPCy)]2- dianions), whereas the analogous reaction of Sn(NMe2)2 with RbPHCy gives [RbPMDETA{(CyP)3SnP(H)Cy}] (6) (containing a cyclic {(CyP)3Sn} unit).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.