Abstract

Single-electron oxidation in acetonitrile and reduction in DMF of sulfides of 3-RS-1,4-dimethyl-7- ethylazulenes (R = Me, Et, Ph, p-MeC6H4, p-MeOC6H4, N-1-phenyltetrazolyl) leads to stable radical cations and radical anions, respectively. The found reduction potentials of sulfides of the azulene series are close to those of natural and synthetic bioantioxidants. In the radical cations the unpaired electron is essentially delocalized over the cyclopentadienyl fragment of the molecule, and the sulfide group in large measure defines the distribution of spin density. In the radical anion spin density is delocalized in the tropylium cycle, and the influence of the sulfide group is insignificant. Electrochemical oxidation of unsubstituted 1,4-dimethyl-7-ethylazulene results in the formation of a dimeric radical cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call