Abstract

Ru3(CO)12 has been reacted with the compounds hex-1-en-3-yne [EtC≡CCH=CH2], 2-methyl-hex-1-en-3-yne [EtC≡CC(=CH2)CH3] and with 3(ethoxy-silyl)propyl isocyanate [(EtO)3Si(CH2)3NCO] and the compound tb [(EtO)3Si(CH2)3NHC(=O)OCH2C≡CCH2OC(=O)NH(CH2)3Si(OEt)3] in hydrocarbon solution. Some reactions in CH3OH/KOH solution (followed by acidification) have also been performed. The main products of the reactions with ene-ynes are the clusters Ru3(CO)6(μ-CO)2L2 (L = C6H8, C7H10) and their demolition products, the “ferrole” Ru2(CO)6L2 complexes. One of the isomers of Ru3(CO)6(μ-CO)2L2, and Ru2(CO)6L2 (L = C7H10) have been reacted with vinyl-triethoxysilane [(EtO)3SiCH=CH2]: these reactions did not afford complexes containing new carbon–carbon bonds or triethoxy-silyl groups. Only polymerization of vinyl-triethoxysilane occurred. The reactions of Ru3(CO)12 with triethoxysilyl-propyl-isocyanate and tb (in the presence of Me3NO) lead to the same products, that is the isomeric complexes (μ-H)Ru3(CO)9[C=N(H)(CH2)3Si(OEt)3] with a “perpendicular” ligand (complex 3, as proposed on the basis of spectroscopic results) and (μ-H)Ru3(CO)9[HC=N(CH2)3Si(OEt)3] with a “parallel” ligand (complex 4, as confirmed by a X-ray analysis). The reaction pathways leading to these products are discussed. Complex 4 has been reacted with tetraethyl orthosilicate and the resulting material has been characterized. These reactions are part of a study on the synthesis of inorganic-organometallic materials through sol–gel techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.