Abstract
This contribution presents evidence for new pathways manifested in the reactions of the phenylhydrosilanes PhnSiH4-n with the pincer complexes (POCsp(2)OP)Ni(OSiMe3), 1-OSiMe3, and (POCsp(3)OP)Ni(OSiMe3), 2-OSiMe3 (POCsp(2)OP = 2,6-(i-Pr2PO)2C6H3; POCsp(3)OP = (i-Pr2POCH2)2CH). Excess PhSiH3 or Ph2SiH2 reacted with 1-OSiMe3 to eliminate the disilyl ethers Ph(n)H(3-n)SiOSiMe3 (n = 1 or 2) and generate the nickel hydride species 1-H. Subsequent reaction of the latter with more substrate formed corresponding nickel silyl species 1-SiPhH2 or 1-SiPh2H and generated multiple Si-containing products, including disilanes and redistribution products. The reaction of 1-OSiMe3 with excess Ph2SiH2/Ph2SiD2 revealed a net KIE of ca. 1.3-1.4 at room temperature. Treating 1-OSiMe3 with excess Ph3SiH also gave 1-H and the corresponding disilyl ether Ph3SiOSiMe3, but this reaction also generated the new siloxide 1-OSiPh3 apparently via an unconventional σ-bond metathesis pathway in which the Ni center is not involved directly. The reaction of excess PhSiH3 and 2-OSiMe3 gave polysilanes of varying solubilities and molecular weights; NMR investigations showed that these polymers arise from Ni(0) species generated in situ from the reductive elimination of the highly reactive hydride intermediate, 2-H. The stoichiometric reactions of 2-OSiMe3 with Ph2SiH2 and Ph3SiH gave, respectively, siloxides 2-OSiPh2(OSiMe3) and 2-OSiPh3. Together, these results demonstrate the strong influence of pincer backbone and hydrosilane sterics on the different reactivities of 1-OSiMe3 and 2-OSiMe3 toward Ph(n)SiH(4-n) (dimerization, polymerization, and redistribution vs formation of new siloxides). The mechanisms of the reactions that lead to the observed Si-O, Si-C, and Si-Si bond formations are discussed in terms of classical and unconventional σ-bond metathesis pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.