Abstract

Abstract Pulse radiolysis experiments monitoring optical absorbance as well as conductivity and in-situ ESR radiolysis studies show that the OH radical reacts with the enol (k=8.6 x 109 M-1 s-1) and the enolate (k = 7.4 X 109 M-1 s-1) forms of acetylacetone by addition to the C = C double bond in aqueous N2O saturated solution. The OH reaction with enol leads to equal amounts of two radicals, CH3COCHOHCOHCH3 (2) and CH3COCHC(OH)2CH3 (4), as determined by scavenger reactions. At pH less than 1 the radical CH3COCHCOCH3 (1) is observed by ESR spectroscopy showing that radical 2 and/or 4 eliminate water by proton catalyzed reactions. Under alkaline condition the OH adducts to the enolate eliminate OH -with rate constants larger than 105 s-1 leading to radical 1. G(OH-) is determined to be 5.6 showing that addition is the main reaction of OH with enolate. To a much smaller degree the OH radical is proposed to abstract an H atom from that CH3 group which is attached to the C -C double bond in enol and enolate, producing substituted allyl radicals which absorb in the visible region. The reaction of OH with the keto form has not been observed indicating that the rate constant of this reaction is significantly smaller than those with enol and enolate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call