Abstract

The functionalization of three n-alkanes by means of a low-pressure oxygen plasma has been achieved. The plasma was generated by applying a low-Frequency high-voltage glow discharge through an oxygen flow. bit, activated species so produced have been allowed to interact with the surface of each one of the liquid compounds at a time. The hydrocarbon has been cooled down to a temperature low enough so that its vapor pressure is about 20–100 times lower than the O2 pressure, this heing of the order of 0.1–0.4 torr. Under these conditions the main products of the reactions have been the alcohols, except for the primary ones, and the corresponding ketones. A remarkable result we have arrived at is that for the first time secondary carbon hydrogen bonds have shown to possess different reactivities withO(3P). The latter has proved to he the most relevant active species of the plasma. A discussion is given to explain this novel result under two theoretical bases recently published: (i) a conformational analysis of the hydrocarbons according to molecular mechanics calculations, and (ii) an analysis of properties of the molecules based on calculations with charge distributions derived from 6–31G* wave functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.