Abstract

The Maillard reaction is important during the heating and processing of foods for its contribution to food quality. To control a reaction as complex as the Maillard reaction, it is necessary to study the reactions of interest quantitatively. In this paper the main reaction products in monosaccharide-casein systems, which were heated at 120 degrees C and pH 6.7, were identified and quantified, and the reaction pathways were established. The main reaction routes were (i) sugar isomerization, (ii) degradation of the sugar into carboxylic acids, and (iii) the Maillard reaction itself, in which not only the sugar itself but also its reaction products react with the epsilon-amino group of lysine residues of the protein. Significant differences in reaction mechanism between aldose and ketose sugars were observed. Ketoses seemed to be more reactive in the sugar degradation reactions than their aldose isomers, and whereas the Amadori product was detected as a Maillard reaction intermediate in the aldose-casein system, no such intermediate could be found in the ketose-casein system. The reaction pathways found were put together into a model, which will be evaluated by kinetic modeling in a subsequent paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.