Abstract

The interactions between different low work function metals aluminium, calcium and sodium, and α,ω-diphenyltetradecaheptaene, a model molecule for certain conjugated polymers, have been investigated using both x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. The spectra are interpreted with the help of the results of quantum chemical calculations performed within the local spin density (LSD) approximation methodology. The metals are found to interact with the conjugated system in very different ways. Aluminium forms a covalent bond, which strongly modifies the π-electronic structure of the conjugated molecule, while both the sodium and the calcium atoms act as doping agents, inducing new states in the otherwise forbidden bandgap. These new gap states can be viewed as a soliton–antisoliton pair for the Na/DP7 and a bipolaronic-like defect for Ca/DP7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.