Abstract
Stable in the solid state and isolable in high yields are adducts of H(2)SiCl(2), HSiCl(3), and RSiCl(3) (R = Me, Ph) with the N,N'-chelating ligands 1,10-phenanthroline (phen; 1c), 2,2'-bipyridine (bipy; 1b), and (to a limited extent) N,N,N',N'-tetramethylethylenediamine (tmeda; 1a). The products were comprehensively characterized via multinuclear solution and solid-state NMR spectroscopy, including analysis of the (29)Si NMR chemical shift anisotropy tensors, Raman spectroscopy, elemental analyses, and, for SiCl(4)(phen) (2c), HSiCl(3)(bipy) (3b), H(2)SiCl(2)(bipy) (4b), MeSiCl(3)(phen) (5c), and PhSiCl(3)(phen) (6c), single-crystal X-ray structure analyses. The latter revealed that the nonchlorine substituents (i.e., H, Me, and Ph) are exclusively trans-disposed to the N-donor atoms of the chelating ligands. A dismutation of the complexes HXSiCl(2)(bipy) and HXSiCl(2)(tmeda) (X = H or Cl) was observed in polar solvents at elevated temperatures. This reaction is more pronounced when phen is used instead of bipy or tmeda. For MeHSiCl(2)(phen), in addition to undergoing H-Cl redistribution accompanied by the formation of 5c, an unexpected 1,4-hydrosilylation was observed. The latter was proven NMR-spectroscopically and by a single-crystal X-ray structure analysis of the product MeSiCl(2)(4H-phen) (7), a pentacoordinated silicon compound with a trigonal-bipyramidal arrangement of the subsituents and the methyl group located in an equatorial position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.