Abstract

This work describes reactions of heteroallenes with diamido-diamine cyclam-based Zr(iv) complexes of the general formula (Bn2Cyclam)ZrX2 (X = O(t)Bu, , O(i)Pr, , SPh, , NH(t)Bu, ) as well as the di-orthometallated species ((C6H4CH2)2Cyclam)Zr, . The reactions of isocyanates or isothiocyanates with , or resulted in the formation of N-bonded ureate or thioureate cyclam complexes upon [2 + 2] cycloaddition of the Zr-Namido bonds of the cyclam to the heteroallene (). DFT calculations showed that κ(2)-N,N'-ureate bonding is favoured over κ(2)-N,O-ureates, which in turn may be formed in reactions with bulky isocyanates as 1-naphthyl isocyanate (NpN[double bond, length as m-dash]C[double bond, length as m-dash]O). The reactions of with N,N'-cyclohexylcarbodiimide (CyN[double bond, length as m-dash]C[double bond, length as m-dash]NCy) and carbon disulfide afforded guanidinate and dithiocarbamate fragments, respectively, appended to one of the nitrogen atoms of the cyclam ligand. These reactions represent a reliable method for the synthesis of asymmetrically N-functionalized cyclams giving rise to C1 symmetry Zr(iv) species by addition of one equivalent of heteroallenes. The reaction of (Bn2Cyclam)Zr(NH(t)Bu)2, , with one equivalent of mesityl isocyanate (MesN[double bond, length as m-dash]C[double bond, length as m-dash]O) also proceeds through insertion, involving one Zr-NH(t)Bu bond. However, it was observed that the reaction of (Bn2Cyclam)Zr(NH(t)Bu)2, , with MesN[double bond, length as m-dash]C[double bond, length as m-dash]O follows a different path if the reaction is carried out at 60 °C. In this case the reaction leads to [2 + 2] addition of the Zr-Ncyclam bond to the isocyanate, with a concomitant occurrence of orthometallation of the one benzyl pending group of the cyclam ring. The reaction of (t)BuN[double bond, length as m-dash]C[double bond, length as m-dash]O with the di-orthometallated complex ((C6H4CH2)2Cyclam)Zr, , also gave a κ(2)-N,N'-ureate fragment, by isocyanate addition to the macrocycle. DFT calculations on these systems were conducted in an attempt to rationalise the reactivity patterns observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.